Progressive unanchoring of Antarctic ice shelves since 1973
Greene, C. A., Gardner, A. S., Schlegel, N.-J. & Fraser, A. D. Antarctic calving loss rivals ice-shelf thinning. Nature 609, 948–953 (2022).
Article ADS CAS PubMed Google Scholar
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).
Article ADS Google Scholar
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).
Article ADS CAS PubMed PubMed Central Google Scholar
Hogg, A. E., Gilbert, L., Shepherd, A., Muir, A. S. & McMillan, M. Extending the record of Antarctic ice shelf thickness change, from 1992 to 2017. Adv. Space Res. 68, 724–731 (2021).
Article ADS Google Scholar
Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).
Article ADS CAS PubMed Google Scholar
Matsuoka, K. et al. Antarctic ice rises and rumples: their properties and significance for ice-sheet dynamics and evolution. Earth Sci. Rev. 150, 724–745 (2015).
Article ADS Google Scholar
Rignot, E. et al. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
The IMBIE team Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).
Article ADS Google Scholar
Glavovic, B. C. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds H.-O. Pörtner et al.) 2163–2194 (Cambridge Univ. Press, 2022).
Jenkins, A. et al. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci. 3, 468–472 (2010).
Article ADS CAS Google Scholar
Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).
Article ADS CAS Google Scholar
Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).
Article ADS CAS PubMed Google Scholar
Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).
Article ADS CAS PubMed Google Scholar
Adusumilli, S. et al. Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016. Geophys. Res. Lett. 45, 4086–4095 (2018).
Article ADS Google Scholar
Paolo, F. S. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci. 11, 121–126 (2018).
Article ADS CAS PubMed PubMed Central Google Scholar
Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).
Article ADS CAS PubMed Google Scholar
Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).
Article ADS CAS PubMed Google Scholar
Roberts, J. et al. Ocean forced variability of Totten Glacier mass loss. Geol. Soc. Spec. Publ. 461, 175–186 (2018).
Article ADS Google Scholar
Favier, L., Pattyn, F., Berger, S. & Drews, R. Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica. Cryosphere 10, 2623–2635 (2016).
Article ADS Google Scholar
Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).
Article ADS Google Scholar
Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).
Article ADS Google Scholar
Larour, E., Rignot, E. & Aubry, D. Modelling of rift propagation on Ronne Ice Shelf, Antarctica, and sensitivity to climate change. Geophys. Res. Lett. 31, L16404 (2004).
Article ADS Google Scholar
Rignot, E. & MacAyeal, D. R. Ice-shelf dynamics near the front of the Filchner—Ronne Ice Shelf, Antarctica, revealed by SAR interferometry. J. Glaciol. 44, 405–418 (1998).
Article ADS Google Scholar
Holland, P. R., Bevan, S. L. & Luckman, A. J. Strong ocean melting feedback during the recent retreat of Thwaites Glacier. Geophys. Res. Lett. 50, e2023GL103088 (2023).
Article ADS Google Scholar
Bindschadler, R. et al. The Landsat Image Mosaic of Antarctica. Remote Sens. Environ. 112, 4214–4226 (2008).
Article ADS Google Scholar
Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).
Article ADS Google Scholar
Mitcham, T., Gudmundsson, G. H. & Bamber, J. L. The instantaneous impact of calving and thinning on the Larsen C Ice Shelf. Cryosphere 16, 883–901 (2022).
Article ADS Google Scholar
Padman, L. et al. Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica. J. Geophys. Res. 117, C01010 (2012).
ADS Google Scholar
Cochran, J. R., Jacobs, S. S., Tinto, K. J. & Bell, R. E. Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability. Cryosphere 8, 877–889 (2014).
Article ADS Google Scholar
Hogg, A. E. et al. Increased ice flow in Western Palmer Land linked to ocean melting. Geophys. Res. Lett. 44, 4159–4167 (2017).
Article ADS Google Scholar
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Tett, S. F. B. & Muto, A. Four-decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica. Geophys. Res. Lett. 43, 5741–5749 (2016).
Article ADS Google Scholar
Oelerich, R., Heywood, K. J., Damerell, G. M. & Thompson, A. F. Wind-induced variability of warm water on the southern Bellingshausen Sea continental shelf. J. Geophys. Res. Oceans 127, e2022JC018636 (2022).
Article ADS PubMed PubMed Central Google Scholar
Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2017).
Article ADS CAS PubMed Google Scholar
Graham, A. G. C. et al. Rapid retreat of Thwaites Glacier in the pre-satellite era. Nat. Geosci. 15, 706–713 (2022).
Article ADS CAS Google Scholar
Miles, B. W. J. et al. High spatial and temporal variability in Antarctic ice discharge linked to ice shelf buttressing and bed geometry. Sci. Rep. 12, 10968 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Campbell, A. J., Hulbe, C. L. & Lee, C.-K. Ice stream slowdown will drive long-term thinning of the Ross Ice Shelf, with or without ocean warming. Geophys. Res. Lett. 45, 201–206 (2018).
Article ADS Google Scholar
Bindschadler, R. & Vornberger, P. Changes in the West Antarctic Ice Sheet since 1963 from declassified satellite photography. Science 279, 689–692 (1998).
Article ADS CAS PubMed Google Scholar
Miles, B. W. J. et al. Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds. Cryosphere 17, 445–456 (2023).
Article ADS Google Scholar
Wearing, M. G. & Kingslake, J. Holocene formation of Henry Ice Rise, West Antarctica, inferred from ice-penetrating radar. J. Geophys. Res. Earth Surf. 124, 2224–2240 (2019).
Article ADS Google Scholar
Eisermann, H., Eagles, G., Ruppel, A. S., Läufer, A. & Jokat, W. Bathymetric control on Borchgrevink and Roi Baudouin ice shelves in East Antarctica. J. Geophys. Res. Earth Surf. 126, e2021JF006342 (2021).
Article ADS Google Scholar
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J. & Morin, P. The Reference Elevation Model of Antarctica. Cryosphere 13, 665–674 (2019).
Article ADS Google Scholar
Henry, A. C. J., Drews, R., Schannwell, C. & Višnjević, V. Hysteretic evolution of ice rises and ice rumples in response to variations in sea level. Cryosphere 16, 3889–3905 (2022).
Article ADS Google Scholar
Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).
Article ADS CAS Google Scholar
Herraiz-Borreguero, L. & Naveira Garabato, A. C. Poleward shift of Circumpolar Deep Water threatens the East Antarctic Ice Sheet. Nat. Clim. Change 12, 728–734 (2022).
Article ADS Google Scholar
Silvano, A. et al. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci. Adv. 4, eaap9467 (2018).
Article ADS PubMed PubMed Central Google Scholar
Flexas, M. M., Thompson, A. F., Schodlok, M. P., Zhang, H. & Speer, K. Antarctic Peninsula warming triggers enhanced basal melt rates throughout West Antarctica. Sci. Adv. 8, eabj9134 (2022).
Article PubMed PubMed Central Google Scholar
Gudmundsson, G. H., Barnes, J. M., Goldberg, D. N. & Morlighem, M. Limited impact of Thwaites Ice Shelf on future ice loss from Antarctica. Geophys. Res. Lett. 50, e2023GL102880 (2023).
Article ADS Google Scholar
Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
Article ADS Google Scholar
Moholdt, G. & Matsuoka, K. Inventory of Antarctic ice rises and rumples (version 1). Norwegian Polar Institute https://doi.org/10.21334/npolar.2015.9174e644 (2015).
Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2. NASA National Snow and Ice Data Center Distributed Active Archive Center https://doi.org/10.5067/IKBWW4RYHF1Q (2016).
Rignot, E., Mouginot, J. & Scheuchl, B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett. 38, L10504 (2011).
Article ADS Google Scholar
Miles, B. & Bingham, R. Landsat mosaics of Antarctic Ice Shelves from 1973 and 1989, 1973-1989. Univ. Edinburgh, School of Geosciences https://doi.org/10.7488/ds/3810 (2023).
Miles, B. & Bingham, R. Landsat mosaics of Antarctic Ice Shelves from 2022 [dataset]. Univ. Edinburgh, School of Geosciences https://doi.org/10.7488/ds/7531 (2023).
Miles, B. & Bingham, R. Antarctic ice shelf pinning point change classification 1973-2022. Univ. Edinburgh, School of Geosciences https://doi.org/10.7488/ds/7583 (2023).