Hot topics close

The coral microbiome in sickness, in health and in a changing world

The coral microbiome in sickness in health and in a changing world
In this Review, Voolstra, Raina, Peixoto and colleagues discuss our current knowledge of the function and role of the bacterial microbiome in coral health and disease, and elucidate the response of the host-associated bacteria to global change, which bear
  • Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Knowlton, N. et al. Rebuilding coral reefs: a decadal grand challenge (International Coral Reef Society and Future Earth Coasts, 2021).

  • Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).

    Article  ADS  Google Scholar 

  • Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Pogoreutz, C. et al. in Cellular Dialogues in the Holobiont (eds Bosch, T. C. G. & Hadfield, M. G.) 91–118 (CRC, 2020).

  • Rohwer, F., Seguritan, V. & Azam, F. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 85, 37–48 (2002).

    Google Scholar 

  • Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).

    Article  PubMed  Google Scholar 

  • LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, e2022653118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).

    Article  PubMed  Google Scholar 

  • Thurber, R. V., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus–host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Bonacolta, A. M. et al. Beyond the Symbiodiniaceae: diversity and role of microeukaryotic coral symbionts. Coral Reefs 42, 567–577 (2023).

    Article  Google Scholar 

  • Peixoto, R. S. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. 7, 1–10 (2022).

    Article  Google Scholar 

  • Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).

    Article  ADS  Google Scholar 

  • Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020).

    Article  PubMed  Google Scholar 

  • Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews, J. L. et al. Symbiodiniaceae–bacteria interactions: rethinking metabolite exchange in reef-building corals as multi-partner metabolic networks. Environ. Microbiol. 22, 1675–1687 (2020).

    Article  PubMed  Google Scholar 

  • Schultz, J. et al. Methods and strategies to uncover coral-associated microbial dark matter. mSystems 7, e0036722 (2022).

    Article  PubMed  Google Scholar 

  • Sweet, M. et al. Insights into the cultured bacterial fraction of corals. mSystems 6, e0124920 (2021).

    Article  PubMed  Google Scholar 

  • Pogoreutz, C. et al. Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. ISME J. 16, 1883–1895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cárdenas, A. et al. Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility. ISME J. 16, 2406–2420 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Robbins, S. J. et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 4, 2090–2100 (2019).

    Article  PubMed  Google Scholar 

  • Hochart, C. et al. Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean. Nat. Commun. 14, 3037 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Dörr, M. et al. Short-term heat stress assays resolve effects of host strain, repeat stress, and bacterial inoculation on Aiptasia thermal tolerance phenotypes. Coral Reefs 42, 1–11 (2023).

    Article  Google Scholar 

  • Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Buitrago-López, C. et al. Disparate population and holobiont structure of pocilloporid corals across the Red Sea gradient demonstrate species-specific evolutionary trajectories. Mol. Ecol. 32, 2151–2173 (2023).

    Article  PubMed  Google Scholar 

  • Rädecker, N. et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. 16, 1110–1118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan, W. Y., Rudd, D. & van Oppen, M. J. Spatial metabolomics for symbiotic marine invertebrates. Life Sci. Alliance 6, e202301900 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).

    Article  PubMed  Google Scholar 

  • van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, P. A. et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 14, 2211–2222 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Neave, M. J. et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 11, 186–200 (2017).

    Article  PubMed  Google Scholar 

  • Roder, C., Bayer, T., Aranda, M., Kruse, M. & Voolstra, C. R. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24, 3501–3511 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan, W. Y., Peplow, L. M., Menéndez, P., Hoffmann, A. A. & van Oppen, M. J. H. The roles of age, parentage and environment on bacterial and algal endosymbiont communities in Acropora corals. Mol. Ecol. 28, 3830–3843 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, Y. et al. Urbanization comprehensively impairs biological rhythms in coral holobionts. Glob. Chang. Biol. 28, 3349–3364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röthig, T., Roik, A., Yum, L. K. & Voolstra, C. R. Distinct bacterial microbiomes associate with the deep-sea coral Eguchipsammia fistula from the Red Sea and from aquaria settings. Front. Mar. Sci. 4, 259 (2017).

    Article  Google Scholar 

  • Hadaidi, G. et al. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Sci. Rep. 7, 45362 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogoreutz, C. et al. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8, 2240–2252 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Haydon, T. D. et al. Rapid shifts in bacterial communities and homogeneity of symbiodiniaceae in colonies of Pocillopora acuta transplanted between reef and mangrove environments. Front. Microbiol. 12, 756091 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Damjanovic, K., Menéndez, P., Blackall, L. L. & van Oppen, M. J. H. Mixed-mode bacterial transmission in the common brooding coral Pocillopora acuta. Environ. Microbiol. 22, 397–412 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Sharp, K. H., Ritchie, K. B., Schupp, P. J., Ritson-Williams, R. & Paul, V. J. Bacterial acquisition in juveniles of several broadcast spawning coral species. PLoS ONE 5, e10898 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Damjanovic, K., Blackall, L. L., Menéndez, P. & van Oppen, M. J. H. Bacterial and algal symbiont dynamics in early recruits exposed to two adult coral species. Coral Reefs 39, 189–202 (2020).

    Article  Google Scholar 

  • Dubé, C. E. et al. Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition. Nat. Commun. 12, 6402 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Strader, M. E. et al. Nitrate enrichment has lineage specific effects on Pocillopora acuta adults, but no transgenerational effects in planulae. Coral Reefs 41, 303–317 (2022).

    Article  Google Scholar 

  • Luo, D. et al. Population differentiation of Rhodobacteraceae along with coral compartments. ISME J. 15, 3286–3302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huggett, M. J. & Apprill, A. Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ. Microbiol. Rep. 11, 372–385 (2019).

    Article  PubMed  Google Scholar 

  • Oren, A. & Garrity, G. M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71, 005056 (2021).

    Article  Google Scholar 

  • Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, A. R., Ochsenkühn, M. A., Kazlak, A. M., Moustafa, A. & Amin, S. A. The coral microbiome: towards an understanding of the molecular mechanisms of coral–microbiota interactions. FEMS Microbiol. Rev. 47, fuad005 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galand, P. E. et al. Diversity of the Pacific Ocean coral reef microbiome. Nat. Commun. 14, 3039 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Neave, M. J., Michell, C. T., Apprill, A. & Voolstra, C. R. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 7, 40579 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon, K. et al. Comparative genomics: dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). ISME J. 14, 1290–1303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide, K. et al. Targeted single-cell genomics reveals novel host adaptation strategies of the symbiotic bacteria Endozoicomonas in Acropora tenuis coral. Microbiome 10, 220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. 30, 4466–4480 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Raina, J.-B., Tapiolas, D., Willis, B. L. & Bourne, D. G. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl. Environ. Microbiol. 75, 3492–3501 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissimov, J., Rosenberg, E. & Munn, C. B. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol. Lett. 292, 210–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Portillo, E., Ramos-Esplá, A. A. & Antón, J. Shifts in marine invertebrate bacterial assemblages associated with tissue necrosis during a heat wave. Coral Reefs 40, 395–404 (2021).

    Article  Google Scholar 

  • Kitamura, R. et al. Specific detection of coral-associated ruegeria, a potential probiotic bacterium, in corals and subtropical seawater. Mar. Biotechnol. 23, 576–589 (2021).

    Article  CAS  Google Scholar 

  • Levy, S. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184, 2973–2987.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, D. J., Raina, J.-B., Nielsen, D. A., Suggett, D. J. & Kühl, M. Disentangling compartment functions in sessile marine invertebrates. Trends Ecol. Evol. 37, 740–748 (2022).

    Article  PubMed  Google Scholar 

  • Pernice, M. et al. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 14, 325–334 (2020).

    Article  PubMed  Google Scholar 

  • Sweet, M. J., Croquer, A. & Bythell, J. C. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30, 39–52 (2011).

    Article  ADS  Google Scholar 

  • Ainsworth, T. D., Krause, L., Bridge, T. & Torda, G. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 9, 2261–2274 (2015).

    Article  CAS  Google Scholar 

  • Apprill, A., Weber, L. G. & Santoro, A. E. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems 1, e00143–e00216 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcelino, V. R., van Oppen, M. J. & Verbruggen, H. Highly structured prokaryote communities exist within the skeleton of coral colonies. ISME J. 12, 300–303 (2018).

    Article  PubMed  Google Scholar 

  • Maire, J. et al. Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs. ISME J. 15, 2028–2042 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maire, J. et al. Colocalization and potential interactions of Endozoicomonas and chlamydiae in microbial aggregates of the coral Pocillopora acuta. Sci. Adv. 9, eadg0773 (2023).

    Article  CAS  PubMed  Google Scholar 

  • van Oppen, M. J. H. & Raina, J.-B. Coral holobiont research needs spatial analyses at the microbial scale. Environ. Microbiol. 25, 179–183 (2023).

    Article  PubMed  Google Scholar 

  • Apprill, A. et al. Toward a new era of coral reef monitoring. Environ. Sci. Technol. 57, 5117–5124 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, T. S. B., Matias Rodrigues, J. F. & von Mering, C. Ecological consistency of SSU rRNA-based operational taxonomic units at a global scale. PLoS Comput. Biol. 10, e1003594 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Camp, E. F. et al. Micronutrient content drives elementome variability amongst the Symbiodiniaceae. BMC Plant. Biol. 22, 184 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettay, D. T., Wham, D. C., Smith, R. T., Iglesias-Prieto, R. & LaJeunesse, T. C. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc. Natl Acad. Sci. USA 112, 7513–7518 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasquez Kuntz, K. L. et al. Inheritance of somatic mutations by animal offspring. Sci. Adv. 8, eabn0707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong, W. K., Del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).

    Article  PubMed  Google Scholar 

  • Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 39, 583–601 (2020).

    Article  Google Scholar 

  • Dubé, C. E. et al. Algal symbioses with fire corals demonstrate host genotype specificity and niche adaptation at subspecies resolution. Preprint at bioRxiv https://doi.org/10.1101/2023.04.03.535406 (2023).

  • Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis. J. Exp. Biol. 215, 3467–3477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rädecker, N., Escrig, S., Spangenberg, J. E., Voolstra, C. R. & Meibom, A. Coupled carbon and nitrogen cycling regulates the cnidarian-algal symbiosis. Nat. Commun. 14, 6948 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Ngugi, D. K., Ziegler, M., Duarte, C. M. & Voolstra, C. R. Genomic blueprint of glycine betaine metabolism in coral metaorganisms and their contribution to reef nitrogen budgets. iScience 23, 101120 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Campo, J., Pombert, J.-F., Šlapeta, J., Larkum, A. & Keeling, P. J. The ‘other’ coral symbiont: Ostreobium diversity and distribution. ISME J. 11, 296–299 (2017).

    Article  PubMed  Google Scholar 

  • Fine, M. & Loya, Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc. Biol. Sci. 269, 1205–1210 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Janouškovec, J., Horák, A., Barott, K. L., Rohwer, F. L. & Keeling, P. J. Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J. 7, 444–447 (2013).

    Article  PubMed  Google Scholar 

  • Mohamed, A. R. et al. Deciphering the nature of the coral–Chromera association. ISME J. 12, 776–790 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yang, S.-H. et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome 7, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tandon, K. et al. Genomic view of the diversity and functional role of archaea and bacteria in the skeleton of the reef-building corals Porites lutea and Isopora palifera. Gigascience 12, giac127 (2022).

    Article  PubMed  Google Scholar 

  • Howe-Kerr, L. I. et al. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME Commun. 3, 27 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grupstra, C. G. B. et al. Thermal stress triggers productive viral infection of a key coral reef symbiont. ISME J. 16, 1430–1441 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cárdenas, A. et al. Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Front. Microbiol. 11, 572534 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Marhaver, K. L., Edwards, R. A. & Rohwer, F. Viral communities associated with healthy and bleaching corals. Environ. Microbiol. 10, 2277–2286 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Goeij, J. M. & van Duyl, F. C. Coral cavities are sinks of dissolved organic carbon (DOC). Limnol. Oceanogr. 52, 2608–2617 (2007).

    Article  ADS  Google Scholar 

  • Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84, 1–17 (2009).

    Article  PubMed  Google Scholar 

  • Pogoreutz, C. et al. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob. Chang. Biol. 23, 3838–3848 (2017).

    Article  ADS  PubMed  Google Scholar 

  • Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Nelson, C. E. et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 7, 962–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cárdenas, A. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J. 12, 59–76 (2018).

    Article  PubMed  Google Scholar 

  • Cui, G. et al. Molecular insights into the Darwin paradox of coral reefs from the sea anemone Aiptasia. Sci. Adv. 9, eadf7108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).

    Article  ADS  CAS  Google Scholar 

  • Pogoreutz, C. et al. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front. Microbiol. 8, 1187 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Geissler, L. et al. Highly variable and non-complex diazotroph communities in corals from ambient and high CO2 environments. Front. Mar. Sci. 8, 754682 (2021).

    Article  Google Scholar 

  • Bednarz, V. N., Grover, R., Maguer, J. F., Fine, M. & Ferrier-Pagès, C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. mBio 8, e02058-16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wafar, M. M., Wafar, S. & David, J. J. Nitrification in reef corals. Limnol. Oceanogr. 35, 725–730 (1990).

    Article  ADS  CAS  Google Scholar 

  • Tilstra, A. et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci. Rep. 9, 19460 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilstra, A. et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability. R. Soc. Open Sci. 8, 201835 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Khaled, Y. C. et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar. Ecol. Prog. Ser. 645, 55–66 (2020).

    Article  ADS  CAS  Google Scholar 

  • Gardner, S. G. G. et al. Increased DMSP availability during thermal stress influences DMSP-degrading bacteria in coral mucus. Front. Mar. Sci. 9, 912862 (2022).

    Article  Google Scholar 

  • Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Kuek, F. W. I. et al. DMSP production by coral-associated bacteria. Front. Mar. Sci. 9, 869574 (2022).

    Article  Google Scholar 

  • Frade, P. R. et al. Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus. Environ. Chem. 13, 252–265 (2015).

    Article  Google Scholar 

  • Peixoto, R. S. et al. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 1–16 (2017).

    Article  CAS  Google Scholar 

  • Yuen, Y. S., Yamazaki, S. S., Baird, A. H., Nakamura, T. & Yamasaki, H. Sulfate-reducing bacteria in the skeleton of the massive coral Goniastrea aspera from the great barrier reef. Galaxea J. Coral Reef Stud. 15, 154–159 (2013).

    Article  Google Scholar 

  • Agostini, S. et al. Coral symbiotic complex: hypothesis through vitamin B12 for a new evaluation. Galaxea J. Coral Reef Stud. 11, 1–11 (2009).

    Article  Google Scholar 

  • Li, J. et al. Cultured bacteria provide insight into the functional potential of the coral-associated microbiome. mSystems 7, e0032722 (2022).

    Article  PubMed  Google Scholar 

  • Bernal, P., Llamas, M. A. & Filloux, A. Type VI secretion systems in plant-associated bacteria. Environ. Microbiol. 20, 1–15 (2018).

    Article  PubMed  Google Scholar 

  • Wada, N. et al. High-resolution spatial and genomic characterization of coral-associated microbial aggregates in the coral Stylophora pistillata. Sci. Adv. 8, eabo2431 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhas, M., Crook, D. W. & Hood, D. W. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell. Microbiol. 10, 2377–2386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, L., Lezan, E., Schmidt, A. & Basler, M. Abundance of bacterial type VI secretion system components measured by targeted proteomics. Nat. Commun. 10, 2584 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Hentschel, U., Piel, J., Degnan, S. M. & Taylor, M. W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Keller-Costa, T. et al. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. Microbiome 10, 151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, E. & Falkovitz, L. The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Annu. Rev. Microbiol. 58, 143–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ben-Haim, Y., Zicherman-Keren, M. & Rosenberg, E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 69, 4236–4242 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R. & van Woesik, R. Unprecedented disease-related coral mortality in southeastern Florida. Sci. Rep. 6, 31374 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Work, T. M. et al. Viral-like particles are associated with endosymbiont pathology in florida corals affected by stony coral tissue loss disease. Front. Mar. Sci. 8, 750658 (2021).

    Article  Google Scholar 

  • Beavers, K. M. et al. Stony coral tissue loss disease induces transcriptional signatures of in situ degradation of dysfunctional Symbiodiniaceae. Nat. Commun. 14, 2915 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 9 (2017).

    Article  Google Scholar 

  • Vega Thurber, R. et al. Deciphering coral disease dynamics: integrating host, microbiome, and the changing environment. Front. Ecol. Evol. 8, 575927 (2020).

    Article  Google Scholar 

  • Sato, Y., Civiello, M., Bell, S. C., Willis, B. L. & Bourne, D. G. Integrated approach to understanding the onset and pathogenesis of black band disease in corals. Environ. Microbiol. 18, 752–765 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Kvennefors, E. C. E. et al. Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb. Ecol. 63, 605–618 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shnit-Orland, M., Sivan, A. & Kushmaro, A. Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microb. Ecol. 64, 851–859 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Raina, J.-B. et al. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 4, e2275 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Krediet, C. J., Ritchie, K. B., Alagely, A. & Teplitski, M. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 7, 980–990 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Ushijima, B. et al. Chemical and genomic characterization of a potential probiotic treatment for stony coral tissue loss disease. Commun. Biol. 6, 248 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Lesser, M. P., Bythell, J. C., Gates, R. D., Johnstone, R. W. & Hoegh-Guldberg, O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J. Exp. Mar. Biol. Ecol. 346, 36–44 (2007).

    Article  Google Scholar 

  • Ezzat, L. et al. Parrotfish predation drives distinct microbial communities in reef-building corals. Anim. Microbiome 2, 5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadaidi, G. et al. Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. PeerJ 6, e5169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Doering, T. et al. Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraïs, S. & Mizrahi, I. The road not taken: the rumen microbiome, functional groups, and community states. Trends Microbiol. 27, 538–549 (2019).

    Article  PubMed  Google Scholar 

  • Thatcher, C., Høj, L. & Bourne, D. G. Probiotics for coral aquaculture: challenges and considerations. Curr. Opin. Biotechnol. 73, 380–386 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S. Host under epigenetic control: a novel perspective on the interaction between microorganisms and corals. Bioessays 43, e2100068 (2021).

    Article  PubMed  Google Scholar 

  • Costa, R. M. et al. Surface topography, bacterial carrying capacity, and the prospect of microbiome manipulation in the sea anemone coral model Aiptasia. Front. Microbiol. 12, 637834 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Puntin, G. et al. The reef-building coral Galaxea fascicularis: a new model system for coral symbiosis research. Coral Reefs 42, 239–252 (2023).

    Article  Google Scholar 

  • Kirsch, R. et al. Metabolic novelty originating from horizontal gene transfer is essential for leaf beetle survival. Proc. Natl Acad. Sci. USA 119, e2205857119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, C. D. et al. The response of coral skeletal nano structure and hardness to ocean acidification conditions. R. Soc. Open Sci. 10, 230248 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).

    Article  Google Scholar 

  • Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315–2325 (2020).

    Article  Google Scholar 

  • Palmer, C. V. Immunity and the coral crisis. Commun. Biol. 1, 91 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollock, F. J. et al. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. R. Soc. Open Sci. 6, 190355 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Röthig, R. et al. Human-induced salinity changes impact marine organisms and ecosystems. Glob. Chang. Biol. 29, 4731–4749 (2023).

    Article  PubMed  Google Scholar 

  • Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang. 10, 296–307 (2020).

    Article  ADS  CAS  Google Scholar 

  • Peixoto, R. S. & Voolstra, C. R. The baseline is already shifted: marine microbiome restoration and rehabilitation as essential tools to mitigate ecosystem decline. Front. Mar. Sci. 10, 1218531 (2023).

    Article  Google Scholar 

  • Meron, D. et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 5, 51–60 (2011).

    Article  PubMed  Google Scholar 

  • Renzi, J. J., Shaver, E. C., Burkepile, D. E. & Silliman, B. R. The role of predators in coral disease dynamics. Coral Reefs 41, 405–422 (2022).

    Article  Google Scholar 

  • Kimes, N. E. et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 6, 835–846 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Boyett, H. V., Bourne, D. G. & Willis, B. L. Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Mar. Biol. 151, 1711–1720 (2007).

    Article  Google Scholar 

  • Morrow, K. M. et al. Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME J. 9, 894–908 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Ezzat, L. et al. Surgeonfish feces increase microbial opportunism in reef-building corals. Mar. Ecol. Prog. Ser. 631, 81–97 (2019).

    Article  ADS  CAS  Google Scholar 

  • Clever, F. et al. The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs. Commun. Biol. 5, 770 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolet, K. J., Chong-Seng, K. M., Pratchett, M. S., Willis, B. L. & Hoogenboom, M. O. Predation scars may influence host susceptibility to pathogens: evaluating the role of corallivores as vectors of coral disease. Sci. Rep. 8, 5258 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg, G. & Cernava, T. The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome 10, 54 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, D.-W. et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci. Rep. 9, 5821 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Marinos, G. et al. Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics. Microbiol. Spectr. 12, e0114423 (2024).

    Article  PubMed  Google Scholar 

  • Grupstra, C. G. B., Lemoine, N. P., Cook, C. & Correa, A. M. S. Thank you for biting: dispersal of beneficial microbiota through ‘antagonistic’ interactions. Trends Microbiol. 30, 930–939 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Mills, J. G. et al. Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restor. Ecol. 25, 866–872 (2017).

    Article  Google Scholar 

  • Dassi, E. et al. The short-term impact of probiotic consumption on the oral cavity microbiome. Sci. Rep. 8, 10476 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Merenstein, D. et al. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 15, 2185034 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanwonterghem, I. & Webster, N. S. Coral reef microorganisms in a changing climate. iScience 23, 100972 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Voolstra, C. R. et al. DNA preservation & DNA extraction protocol for field collection of coral samples suitable for host-, marker gene-, and metagenomics-based sequencing approaches. Zenodo https://doi.org/10.5281/zenodo.8124404 (2023).

  • Voolstra, C. R., Perna, G. & Alderdice, R. RNA preservation & RNA extraction protocol suitable for field collection of coral samples. Zenodo https://doi.org/10.5281/zenodo.7108092 (2022).

  • Voolstra, C. R. et al. Consensus guidelines for advancing coral holobiont genome and specimen voucher deposition. Front. Mar. Sci. 8, 1029 (2021).

    Article  Google Scholar 

  • Staab, S., Cardenas, A., Peixoto, R., Schreiber, F. & Voolstra, C. R. Coracle — a machine learning framework to identify bacteria associated with continuous variables. Bioinformatics 40, btad749 (2024).

    Article  PubMed  Google Scholar 

  • Garcias-Bonet, N. et al. Horizon scanning the application of probiotics for wildlife. Trends Microbiol. https://doi.org/10.1016/j.tim.2023.08.012 (2023).

  • de Lorenzo, V., Marlière, P. & Solé, R. Bioremediation at a global scale: from the test tube to planet Earth. Microb. Biotechnol. 9, 618–625 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Geller, A. M. & Levy, A. “What I cannot create, I do not understand”: elucidating microbe–microbe interactions to facilitate plant microbiome engineering. Curr. Opin. Microbiol. 72, 102283 (2023).

    Article  PubMed  Google Scholar 

  • Ahkami, A. H., Allen White, R., Handakumbura, P. P. & Jansson, C. Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3, 233–243 (2017).

    Article  Google Scholar 

  • Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pielke, R., Jr, Burgess, M. G. & Ritchie, J. Plausible 2005–2050 emissions scenarios project between 2 and 3 °C of warming by 2100. Environ. Res. Lett. 17, 024027 (2022).

    Article  ADS  Google Scholar 

  • Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C. & Possingham, H. P. Securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018).

    Article  PubMed  Google Scholar 

  • Voolstra, C. R., Peixoto, R. S. & Ferrier-Pagès, C. Mitigating the ecological collapse of coral reef ecosystems. EMBO Rep. 24, e56826 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang, N. et al. Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model. ISME Commun. 2, 1–10 (2022).

    Article  Google Scholar 

  • Matthews, J. L. et al. Coral endosymbiont growth is enhanced by metabolic interactions with bacteria. Nat. Commun. 14, 6864 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, J. B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B 281, 20133086 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz, J. M. et al. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event. Nat. Commun. 7, 13801 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Motone, K. et al. A zeaxanthin-producing bacterium isolated from the algal phycosphere protects coral endosymbionts from environmental stress. mBio 11, e01019-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritchie, K. B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).

    Article  ADS  CAS  Google Scholar 

  • Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J. & Voolstra, C. R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv.3, e1602047 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Epstein, H. E., Torda, G., Munday, P. L. & van Oppen, M. J. H. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 13, 1635–1638 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, A. D., Brown, B. E., Putchim, L. & Sweet, M. J. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE 10, e0144902 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wainwright, B. J., Zahn, G. L., Afiq-Rosli, L., Tanzil, J. T. I. & Huang, D. Host age is not a consistent predictor of microbial diversity in the coral Porites lutea. Sci. Rep. 10, 14376 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley, K. M., Alvarez Roa, C., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiology Open 9, e959 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi, R. et al. Establishment of coral–bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10, 1529 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Galazzo, G. et al. How to count our microbes? The effect of different quantitative microbiome profiling approaches. Front. Cell. Infect. Microbiol. 10, 403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramucci, A. R., Focardi, A., Rinke, C. & Hugenholtz, P. Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME Commun. 1, 79 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan, K. D., Fyrestam, J. & Lanekoff, I. Advances in mass spectrometry based single-cell metabolomics. Analyst 144, 782–793 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Assis, J. M. et al. Delivering beneficial microorganisms for corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostafa, H. Lyophilized probiotic lactic acid bacteria viability in potato chips and its impact on oil oxidation. Foods 9, 586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiepś, J. & Dembczyński, R. Current trends in the production of probiotic formulations. Foods 11, 2330 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood-Charlson, E. M., Weynberg, K. D., Suttle, C. A., Roux, S. & van Oppen, M. J. H. Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. Environ. Microbiol. 17, 3440–3449 (2015).

    Article  PubMed  Google Scholar 

  • Levin, R. A., Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 11, 808–812 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Simmonds, P. et al. Four principles to establish a universal virus taxonomy. PLoS Biol. 21, e3001922 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & van Oppen, M. J. H. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Portillo, E. et al. Virulence as a side effect of interspecies interaction in vibrio coral pathogens. mBio 11, e00201-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buerger, P. et al. Novel T4 bacteriophages associated with black band disease in corals. Environ. Microbiol. 21, 1969–1979 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Wang, W. et al. The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction. Nat. Ecol. Evol. 6, 1132–1144 (2022).

    Article  PubMed  Google Scholar 

  • Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira, C. B. & Rohwer, F. L. Piggyback-the-winner in host-associated microbial communities. npj Biofilms Microbiomes 2, 16010 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Silveira, C. B. et al. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 21, 126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, Y., Joseph Pollock, F., Rosenberg, E. & Bourne, D. G. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen 2, 64–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3, e1584 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Nelson, C. E., Wegley Kelly, L. & Haas, A. F. Microbial interactions with dissolved organic matter are central to coral reef ecosystem function and resilience. Ann. Rev. Mar. Sci. 15, 431–460 (2023).

    Article  PubMed  Google Scholar 

  • Sil

  • Similar news
    News Archive
    • Andrew Sabisky
      Andrew Sabisky
      Andrew Sabisky: No 10 adviser resigns over alleged race comments
      16 Feb 2020
      13
    • Libby Clegg
      Libby Clegg
      Dancing On Ice: Ben Hanlin is sent home following skate-off against Libby Clegg
      1 Mar 2020
      14
    • Cholera
      Cholera
      Mayotte, French Indian Ocean Island Reports Cases Of Cholera
      29 Apr 2024
      5
    • Little Women
      Little Women!
      Love Island: Maya Jama and Emily Atack touted for hosting job
      17 Dec 2019
      1
    • Josh Peck
      Josh Peck
      Josh Peck's 2 Kids: All About Max and Shai
      26 Mar 2024
      1
    • C4ISR
      C4ISR
      C4I Systems Market to Register Steady Growth During 2019-2024 by Players: Thales Communications, LT Heavy ...
      11 Jul 2019
      1
    This week's most popular news