The coral microbiome in sickness, in health and in a changing world
Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).
Article CAS PubMed Google Scholar
Knowlton, N. et al. Rebuilding coral reefs: a decadal grand challenge (International Coral Reef Society and Future Earth Coasts, 2021).
Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).
Article ADS Google Scholar
Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).
Article CAS PubMed Google Scholar
Pogoreutz, C. et al. in Cellular Dialogues in the Holobiont (eds Bosch, T. C. G. & Hadfield, M. G.) 91–118 (CRC, 2020).
Rohwer, F., Seguritan, V. & Azam, F. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 85, 37–48 (2002).
Google Scholar
Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).
Article PubMed Google Scholar
LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).
Article CAS PubMed Google Scholar
Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, e2022653118 (2021).
Article PubMed PubMed Central Google Scholar
van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).
Article PubMed Google Scholar
Thurber, R. V., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus–host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017).
Article CAS PubMed Google Scholar
Bonacolta, A. M. et al. Beyond the Symbiodiniaceae: diversity and role of microeukaryotic coral symbionts. Coral Reefs 42, 567–577 (2023).
Article Google Scholar
Peixoto, R. S. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. 7, 1–10 (2022).
Article Google Scholar
Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).
Article ADS Google Scholar
Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).
Article ADS PubMed PubMed Central Google Scholar
Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020).
Article PubMed Google Scholar
Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).
Article ADS CAS PubMed PubMed Central Google Scholar
Matthews, J. L. et al. Symbiodiniaceae–bacteria interactions: rethinking metabolite exchange in reef-building corals as multi-partner metabolic networks. Environ. Microbiol. 22, 1675–1687 (2020).
Article PubMed Google Scholar
Schultz, J. et al. Methods and strategies to uncover coral-associated microbial dark matter. mSystems 7, e0036722 (2022).
Article PubMed Google Scholar
Sweet, M. et al. Insights into the cultured bacterial fraction of corals. mSystems 6, e0124920 (2021).
Article PubMed Google Scholar
Pogoreutz, C. et al. Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. ISME J. 16, 1883–1895 (2022).
Article CAS PubMed PubMed Central Google Scholar
Cárdenas, A. et al. Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility. ISME J. 16, 2406–2420 (2022).
Article PubMed PubMed Central Google Scholar
Robbins, S. J. et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 4, 2090–2100 (2019).
Article PubMed Google Scholar
Hochart, C. et al. Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean. Nat. Commun. 14, 3037 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Dörr, M. et al. Short-term heat stress assays resolve effects of host strain, repeat stress, and bacterial inoculation on Aiptasia thermal tolerance phenotypes. Coral Reefs 42, 1–11 (2023).
Article Google Scholar
Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921 (2018).
Article ADS PubMed PubMed Central Google Scholar
Buitrago-López, C. et al. Disparate population and holobiont structure of pocilloporid corals across the Red Sea gradient demonstrate species-specific evolutionary trajectories. Mol. Ecol. 32, 2151–2173 (2023).
Article PubMed Google Scholar
Rädecker, N. et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. 16, 1110–1118 (2021).
Article PubMed PubMed Central Google Scholar
Chan, W. Y., Rudd, D. & van Oppen, M. J. Spatial metabolomics for symbiotic marine invertebrates. Life Sci. Alliance 6, e202301900 (2023).
Article CAS PubMed PubMed Central Google Scholar
Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).
Article PubMed Google Scholar
van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
Article ADS PubMed PubMed Central Google Scholar
Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).
Article CAS PubMed Google Scholar
O’Brien, P. A. et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 14, 2211–2222 (2020).
Article PubMed PubMed Central Google Scholar
Neave, M. J. et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 11, 186–200 (2017).
Article PubMed Google Scholar
Roder, C., Bayer, T., Aranda, M., Kruse, M. & Voolstra, C. R. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24, 3501–3511 (2015).
Article PubMed PubMed Central Google Scholar
Chan, W. Y., Peplow, L. M., Menéndez, P., Hoffmann, A. A. & van Oppen, M. J. H. The roles of age, parentage and environment on bacterial and algal endosymbiont communities in Acropora corals. Mol. Ecol. 28, 3830–3843 (2019).
Article CAS PubMed Google Scholar
Rosenberg, Y. et al. Urbanization comprehensively impairs biological rhythms in coral holobionts. Glob. Chang. Biol. 28, 3349–3364 (2022).
Article CAS PubMed PubMed Central Google Scholar
Röthig, T., Roik, A., Yum, L. K. & Voolstra, C. R. Distinct bacterial microbiomes associate with the deep-sea coral Eguchipsammia fistula from the Red Sea and from aquaria settings. Front. Mar. Sci. 4, 259 (2017).
Article Google Scholar
Hadaidi, G. et al. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Sci. Rep. 7, 45362 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
Pogoreutz, C. et al. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8, 2240–2252 (2018).
Article PubMed PubMed Central Google Scholar
Haydon, T. D. et al. Rapid shifts in bacterial communities and homogeneity of symbiodiniaceae in colonies of Pocillopora acuta transplanted between reef and mangrove environments. Front. Microbiol. 12, 756091 (2021).
Article PubMed PubMed Central Google Scholar
Damjanovic, K., Menéndez, P., Blackall, L. L. & van Oppen, M. J. H. Mixed-mode bacterial transmission in the common brooding coral Pocillopora acuta. Environ. Microbiol. 22, 397–412 (2020).
Article CAS PubMed Google Scholar
Sharp, K. H., Ritchie, K. B., Schupp, P. J., Ritson-Williams, R. & Paul, V. J. Bacterial acquisition in juveniles of several broadcast spawning coral species. PLoS ONE 5, e10898 (2010).
Article ADS PubMed PubMed Central Google Scholar
Damjanovic, K., Blackall, L. L., Menéndez, P. & van Oppen, M. J. H. Bacterial and algal symbiont dynamics in early recruits exposed to two adult coral species. Coral Reefs 39, 189–202 (2020).
Article Google Scholar
Dubé, C. E. et al. Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition. Nat. Commun. 12, 6402 (2021).
Article ADS PubMed PubMed Central Google Scholar
Strader, M. E. et al. Nitrate enrichment has lineage specific effects on Pocillopora acuta adults, but no transgenerational effects in planulae. Coral Reefs 41, 303–317 (2022).
Article Google Scholar
Luo, D. et al. Population differentiation of Rhodobacteraceae along with coral compartments. ISME J. 15, 3286–3302 (2021).
Article CAS PubMed PubMed Central Google Scholar
Huggett, M. J. & Apprill, A. Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ. Microbiol. Rep. 11, 372–385 (2019).
Article PubMed Google Scholar
Oren, A. & Garrity, G. M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71, 005056 (2021).
Article Google Scholar
Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).
Article CAS PubMed Google Scholar
Mohamed, A. R., Ochsenkühn, M. A., Kazlak, A. M., Moustafa, A. & Amin, S. A. The coral microbiome: towards an understanding of the molecular mechanisms of coral–microbiota interactions. FEMS Microbiol. Rev. 47, fuad005 (2023).
Article CAS PubMed PubMed Central Google Scholar
Galand, P. E. et al. Diversity of the Pacific Ocean coral reef microbiome. Nat. Commun. 14, 3039 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Neave, M. J., Michell, C. T., Apprill, A. & Voolstra, C. R. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 7, 40579 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
Tandon, K. et al. Comparative genomics: dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). ISME J. 14, 1290–1303 (2020).
Article CAS PubMed PubMed Central Google Scholar
Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).
Article CAS PubMed PubMed Central Google Scholar
Ide, K. et al. Targeted single-cell genomics reveals novel host adaptation strategies of the symbiotic bacteria Endozoicomonas in Acropora tenuis coral. Microbiome 10, 220 (2022).
Article CAS PubMed PubMed Central Google Scholar
Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. 30, 4466–4480 (2021).
Article CAS PubMed Google Scholar
Raina, J.-B., Tapiolas, D., Willis, B. L. & Bourne, D. G. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl. Environ. Microbiol. 75, 3492–3501 (2009).
Article ADS CAS PubMed PubMed Central Google Scholar
Nissimov, J., Rosenberg, E. & Munn, C. B. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol. Lett. 292, 210–215 (2009).
Article CAS PubMed Google Scholar
Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).
Article CAS PubMed Google Scholar
Rubio-Portillo, E., Ramos-Esplá, A. A. & Antón, J. Shifts in marine invertebrate bacterial assemblages associated with tissue necrosis during a heat wave. Coral Reefs 40, 395–404 (2021).
Article Google Scholar
Kitamura, R. et al. Specific detection of coral-associated ruegeria, a potential probiotic bacterium, in corals and subtropical seawater. Mar. Biotechnol. 23, 576–589 (2021).
Article CAS Google Scholar
Levy, S. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184, 2973–2987.e18 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hughes, D. J., Raina, J.-B., Nielsen, D. A., Suggett, D. J. & Kühl, M. Disentangling compartment functions in sessile marine invertebrates. Trends Ecol. Evol. 37, 740–748 (2022).
Article PubMed Google Scholar
Pernice, M. et al. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 14, 325–334 (2020).
Article PubMed Google Scholar
Sweet, M. J., Croquer, A. & Bythell, J. C. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30, 39–52 (2011).
Article ADS Google Scholar
Ainsworth, T. D., Krause, L., Bridge, T. & Torda, G. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 9, 2261–2274 (2015).
Article CAS Google Scholar
Apprill, A., Weber, L. G. & Santoro, A. E. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems 1, e00143–e00216 (2016).
Article PubMed PubMed Central Google Scholar
Marcelino, V. R., van Oppen, M. J. & Verbruggen, H. Highly structured prokaryote communities exist within the skeleton of coral colonies. ISME J. 12, 300–303 (2018).
Article PubMed Google Scholar
Maire, J. et al. Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs. ISME J. 15, 2028–2042 (2021).
Article CAS PubMed PubMed Central Google Scholar
Maire, J. et al. Colocalization and potential interactions of Endozoicomonas and chlamydiae in microbial aggregates of the coral Pocillopora acuta. Sci. Adv. 9, eadg0773 (2023).
Article CAS PubMed Google Scholar
van Oppen, M. J. H. & Raina, J.-B. Coral holobiont research needs spatial analyses at the microbial scale. Environ. Microbiol. 25, 179–183 (2023).
Article PubMed Google Scholar
Apprill, A. et al. Toward a new era of coral reef monitoring. Environ. Sci. Technol. 57, 5117–5124 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Schmidt, T. S. B., Matias Rodrigues, J. F. & von Mering, C. Ecological consistency of SSU rRNA-based operational taxonomic units at a global scale. PLoS Comput. Biol. 10, e1003594 (2014).
Article PubMed PubMed Central Google Scholar
Camp, E. F. et al. Micronutrient content drives elementome variability amongst the Symbiodiniaceae. BMC Plant. Biol. 22, 184 (2022).
Article CAS PubMed PubMed Central Google Scholar
Pettay, D. T., Wham, D. C., Smith, R. T., Iglesias-Prieto, R. & LaJeunesse, T. C. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc. Natl Acad. Sci. USA 112, 7513–7518 (2015).
Article ADS CAS PubMed PubMed Central Google Scholar
Vasquez Kuntz, K. L. et al. Inheritance of somatic mutations by animal offspring. Sci. Adv. 8, eabn0707 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kwong, W. K., Del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).
Article ADS CAS PubMed Google Scholar
Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).
Article PubMed Google Scholar
Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 39, 583–601 (2020).
Article Google Scholar
Dubé, C. E. et al. Algal symbioses with fire corals demonstrate host genotype specificity and niche adaptation at subspecies resolution. Preprint at bioRxiv https://doi.org/10.1101/2023.04.03.535406 (2023).
Burriesci, M. S., Raab, T. K. & Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis. J. Exp. Biol. 215, 3467–3477 (2012).
Article CAS PubMed PubMed Central Google Scholar
Rädecker, N., Escrig, S., Spangenberg, J. E., Voolstra, C. R. & Meibom, A. Coupled carbon and nitrogen cycling regulates the cnidarian-algal symbiosis. Nat. Commun. 14, 6948 (2023).
Article ADS PubMed PubMed Central Google Scholar
Ngugi, D. K., Ziegler, M., Duarte, C. M. & Voolstra, C. R. Genomic blueprint of glycine betaine metabolism in coral metaorganisms and their contribution to reef nitrogen budgets. iScience 23, 101120 (2020).
Article ADS CAS PubMed PubMed Central Google Scholar
Del Campo, J., Pombert, J.-F., Šlapeta, J., Larkum, A. & Keeling, P. J. The ‘other’ coral symbiont: Ostreobium diversity and distribution. ISME J. 11, 296–299 (2017).
Article PubMed Google Scholar
Fine, M. & Loya, Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc. Biol. Sci. 269, 1205–1210 (2002).
Article PubMed PubMed Central Google Scholar
Janouškovec, J., Horák, A., Barott, K. L., Rohwer, F. L. & Keeling, P. J. Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J. 7, 444–447 (2013).
Article PubMed Google Scholar
Mohamed, A. R. et al. Deciphering the nature of the coral–Chromera association. ISME J. 12, 776–790 (2018).
Article PubMed PubMed Central Google Scholar
Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).
Article ADS CAS PubMed Google Scholar
Yang, S.-H. et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome 7, 3 (2019).
Article PubMed PubMed Central Google Scholar
Tandon, K. et al. Genomic view of the diversity and functional role of archaea and bacteria in the skeleton of the reef-building corals Porites lutea and Isopora palifera. Gigascience 12, giac127 (2022).
Article PubMed Google Scholar
Howe-Kerr, L. I. et al. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME Commun. 3, 27 (2023).
Article PubMed PubMed Central Google Scholar
Grupstra, C. G. B. et al. Thermal stress triggers productive viral infection of a key coral reef symbiont. ISME J. 16, 1430–1441 (2022).
Article CAS PubMed PubMed Central Google Scholar
Cárdenas, A. et al. Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Front. Microbiol. 11, 572534 (2020).
Article PubMed PubMed Central Google Scholar
Marhaver, K. L., Edwards, R. A. & Rohwer, F. Viral communities associated with healthy and bleaching corals. Environ. Microbiol. 10, 2277–2286 (2008).
Article CAS PubMed PubMed Central Google Scholar
de Goeij, J. M. & van Duyl, F. C. Coral cavities are sinks of dissolved organic carbon (DOC). Limnol. Oceanogr. 52, 2608–2617 (2007).
Article ADS Google Scholar
Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84, 1–17 (2009).
Article PubMed Google Scholar
Pogoreutz, C. et al. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob. Chang. Biol. 23, 3838–3848 (2017).
Article ADS PubMed Google Scholar
Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).
Article CAS PubMed Google Scholar
Nelson, C. E. et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 7, 962–979 (2013).
Article CAS PubMed PubMed Central Google Scholar
Cárdenas, A. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J. 12, 59–76 (2018).
Article PubMed Google Scholar
Cui, G. et al. Molecular insights into the Darwin paradox of coral reefs from the sea anemone Aiptasia. Sci. Adv. 9, eadf7108 (2023).
Article CAS PubMed PubMed Central Google Scholar
Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).
Article ADS CAS Google Scholar
Pogoreutz, C. et al. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front. Microbiol. 8, 1187 (2017).
Article PubMed PubMed Central Google Scholar
Geissler, L. et al. Highly variable and non-complex diazotroph communities in corals from ambient and high CO2 environments. Front. Mar. Sci. 8, 754682 (2021).
Article Google Scholar
Bednarz, V. N., Grover, R., Maguer, J. F., Fine, M. & Ferrier-Pagès, C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. mBio 8, e02058-16 (2017).
Article CAS PubMed PubMed Central Google Scholar
Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).
Article PubMed PubMed Central Google Scholar
Wafar, M. M., Wafar, S. & David, J. J. Nitrification in reef corals. Limnol. Oceanogr. 35, 725–730 (1990).
Article ADS CAS Google Scholar
Tilstra, A. et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci. Rep. 9, 19460 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
Tilstra, A. et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability. R. Soc. Open Sci. 8, 201835 (2021).
Article ADS CAS PubMed PubMed Central Google Scholar
El-Khaled, Y. C. et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar. Ecol. Prog. Ser. 645, 55–66 (2020).
Article ADS CAS Google Scholar
Gardner, S. G. G. et al. Increased DMSP availability during thermal stress influences DMSP-degrading bacteria in coral mucus. Front. Mar. Sci. 9, 912862 (2022).
Article Google Scholar
Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859 (2011).
Article CAS PubMed Google Scholar
Kuek, F. W. I. et al. DMSP production by coral-associated bacteria. Front. Mar. Sci. 9, 869574 (2022).
Article Google Scholar
Frade, P. R. et al. Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus. Environ. Chem. 13, 252–265 (2015).
Article Google Scholar
Peixoto, R. S. et al. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 1–16 (2017).
Article CAS Google Scholar
Yuen, Y. S., Yamazaki, S. S., Baird, A. H., Nakamura, T. & Yamasaki, H. Sulfate-reducing bacteria in the skeleton of the massive coral Goniastrea aspera from the great barrier reef. Galaxea J. Coral Reef Stud. 15, 154–159 (2013).
Article Google Scholar
Agostini, S. et al. Coral symbiotic complex: hypothesis through vitamin B12 for a new evaluation. Galaxea J. Coral Reef Stud. 11, 1–11 (2009).
Article Google Scholar
Li, J. et al. Cultured bacteria provide insight into the functional potential of the coral-associated microbiome. mSystems 7, e0032722 (2022).
Article PubMed Google Scholar
Bernal, P., Llamas, M. A. & Filloux, A. Type VI secretion systems in plant-associated bacteria. Environ. Microbiol. 20, 1–15 (2018).
Article PubMed Google Scholar
Wada, N. et al. High-resolution spatial and genomic characterization of coral-associated microbial aggregates in the coral Stylophora pistillata. Sci. Adv. 8, eabo2431 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Juhas, M., Crook, D. W. & Hood, D. W. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell. Microbiol. 10, 2377–2386 (2008).
Article CAS PubMed PubMed Central Google Scholar
Lin, L., Lezan, E., Schmidt, A. & Basler, M. Abundance of bacterial type VI secretion system components measured by targeted proteomics. Nat. Commun. 10, 2584 (2019).
Article ADS PubMed PubMed Central Google Scholar
Hentschel, U., Piel, J., Degnan, S. M. & Taylor, M. W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).
Article CAS PubMed Google Scholar
Keller-Costa, T. et al. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. Microbiome 10, 151 (2022).
Article CAS PubMed PubMed Central Google Scholar
Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).
Article PubMed PubMed Central Google Scholar
Rosenberg, E. & Falkovitz, L. The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Annu. Rev. Microbiol. 58, 143–159 (2004).
Article CAS PubMed Google Scholar
Ben-Haim, Y., Zicherman-Keren, M. & Rosenberg, E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 69, 4236–4242 (2003).
Article ADS CAS PubMed PubMed Central Google Scholar
Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R. & van Woesik, R. Unprecedented disease-related coral mortality in southeastern Florida. Sci. Rep. 6, 31374 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
Work, T. M. et al. Viral-like particles are associated with endosymbiont pathology in florida corals affected by stony coral tissue loss disease. Front. Mar. Sci. 8, 750658 (2021).
Article Google Scholar
Beavers, K. M. et al. Stony coral tissue loss disease induces transcriptional signatures of in situ degradation of dysfunctional Symbiodiniaceae. Nat. Commun. 14, 2915 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 9 (2017).
Article Google Scholar
Vega Thurber, R. et al. Deciphering coral disease dynamics: integrating host, microbiome, and the changing environment. Front. Ecol. Evol. 8, 575927 (2020).
Article Google Scholar
Sato, Y., Civiello, M., Bell, S. C., Willis, B. L. & Bourne, D. G. Integrated approach to understanding the onset and pathogenesis of black band disease in corals. Environ. Microbiol. 18, 752–765 (2016).
Article CAS PubMed Google Scholar
Kvennefors, E. C. E. et al. Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb. Ecol. 63, 605–618 (2012).
Article ADS CAS PubMed Google Scholar
Shnit-Orland, M., Sivan, A. & Kushmaro, A. Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microb. Ecol. 64, 851–859 (2012).
Article ADS CAS PubMed Google Scholar
Raina, J.-B. et al. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 4, e2275 (2016).
Article PubMed PubMed Central Google Scholar
Krediet, C. J., Ritchie, K. B., Alagely, A. & Teplitski, M. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 7, 980–990 (2013).
Article CAS PubMed Google Scholar
Ushijima, B. et al. Chemical and genomic characterization of a potential probiotic treatment for stony coral tissue loss disease. Commun. Biol. 6, 248 (2023).
Article CAS PubMed PubMed Central Google Scholar
Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).
Article CAS PubMed Google Scholar
Lesser, M. P., Bythell, J. C., Gates, R. D., Johnstone, R. W. & Hoegh-Guldberg, O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J. Exp. Mar. Biol. Ecol. 346, 36–44 (2007).
Article Google Scholar
Ezzat, L. et al. Parrotfish predation drives distinct microbial communities in reef-building corals. Anim. Microbiome 2, 5 (2020).
Article PubMed PubMed Central Google Scholar
Hadaidi, G. et al. Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. PeerJ 6, e5169 (2018).
Article PubMed PubMed Central Google Scholar
Doering, T. et al. Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).
Article CAS PubMed PubMed Central Google Scholar
Moraïs, S. & Mizrahi, I. The road not taken: the rumen microbiome, functional groups, and community states. Trends Microbiol. 27, 538–549 (2019).
Article PubMed Google Scholar
Thatcher, C., Høj, L. & Bourne, D. G. Probiotics for coral aquaculture: challenges and considerations. Curr. Opin. Biotechnol. 73, 380–386 (2022).
Article CAS PubMed Google Scholar
Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S. Host under epigenetic control: a novel perspective on the interaction between microorganisms and corals. Bioessays 43, e2100068 (2021).
Article PubMed Google Scholar
Costa, R. M. et al. Surface topography, bacterial carrying capacity, and the prospect of microbiome manipulation in the sea anemone coral model Aiptasia. Front. Microbiol. 12, 637834 (2021).
Article PubMed PubMed Central Google Scholar
Puntin, G. et al. The reef-building coral Galaxea fascicularis: a new model system for coral symbiosis research. Coral Reefs 42, 239–252 (2023).
Article Google Scholar
Kirsch, R. et al. Metabolic novelty originating from horizontal gene transfer is essential for leaf beetle survival. Proc. Natl Acad. Sci. USA 119, e2205857119 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tan, C. D. et al. The response of coral skeletal nano structure and hardness to ocean acidification conditions. R. Soc. Open Sci. 10, 230248 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).
Article Google Scholar
Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315–2325 (2020).
Article Google Scholar
Palmer, C. V. Immunity and the coral crisis. Commun. Biol. 1, 91 (2018).
Article PubMed PubMed Central Google Scholar
Pollock, F. J. et al. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. R. Soc. Open Sci. 6, 190355 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
Röthig, R. et al. Human-induced salinity changes impact marine organisms and ecosystems. Glob. Chang. Biol. 29, 4731–4749 (2023).
Article PubMed Google Scholar
Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang. 10, 296–307 (2020).
Article ADS CAS Google Scholar
Peixoto, R. S. & Voolstra, C. R. The baseline is already shifted: marine microbiome restoration and rehabilitation as essential tools to mitigate ecosystem decline. Front. Mar. Sci. 10, 1218531 (2023).
Article Google Scholar
Meron, D. et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 5, 51–60 (2011).
Article PubMed Google Scholar
Renzi, J. J., Shaver, E. C., Burkepile, D. E. & Silliman, B. R. The role of predators in coral disease dynamics. Coral Reefs 41, 405–422 (2022).
Article Google Scholar
Kimes, N. E. et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 6, 835–846 (2012).
Article CAS PubMed Google Scholar
Boyett, H. V., Bourne, D. G. & Willis, B. L. Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Mar. Biol. 151, 1711–1720 (2007).
Article Google Scholar
Morrow, K. M. et al. Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME J. 9, 894–908 (2015).
Article CAS PubMed Google Scholar
Ezzat, L. et al. Surgeonfish feces increase microbial opportunism in reef-building corals. Mar. Ecol. Prog. Ser. 631, 81–97 (2019).
Article ADS CAS Google Scholar
Clever, F. et al. The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs. Commun. Biol. 5, 770 (2022).
Article PubMed PubMed Central Google Scholar
Nicolet, K. J., Chong-Seng, K. M., Pratchett, M. S., Willis, B. L. & Hoogenboom, M. O. Predation scars may influence host susceptibility to pathogens: evaluating the role of corallivores as vectors of coral disease. Sci. Rep. 8, 5258 (2018).
Article ADS CAS PubMed PubMed Central Google Scholar
Berg, G. & Cernava, T. The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome 10, 54 (2022).
Article PubMed PubMed Central Google Scholar
Kang, D.-W. et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci. Rep. 9, 5821 (2019).
Article ADS PubMed PubMed Central Google Scholar
Marinos, G. et al. Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics. Microbiol. Spectr. 12, e0114423 (2024).
Article PubMed Google Scholar
Grupstra, C. G. B., Lemoine, N. P., Cook, C. & Correa, A. M. S. Thank you for biting: dispersal of beneficial microbiota through ‘antagonistic’ interactions. Trends Microbiol. 30, 930–939 (2022).
Article CAS PubMed Google Scholar
Mills, J. G. et al. Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restor. Ecol. 25, 866–872 (2017).
Article Google Scholar
Dassi, E. et al. The short-term impact of probiotic consumption on the oral cavity microbiome. Sci. Rep. 8, 10476 (2018).
Article ADS PubMed PubMed Central Google Scholar
Merenstein, D. et al. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 15, 2185034 (2023).
Article PubMed PubMed Central Google Scholar
Vanwonterghem, I. & Webster, N. S. Coral reef microorganisms in a changing climate. iScience 23, 100972 (2020).
Article ADS PubMed PubMed Central Google Scholar
Voolstra, C. R. et al. DNA preservation & DNA extraction protocol for field collection of coral samples suitable for host-, marker gene-, and metagenomics-based sequencing approaches. Zenodo https://doi.org/10.5281/zenodo.8124404 (2023).
Voolstra, C. R., Perna, G. & Alderdice, R. RNA preservation & RNA extraction protocol suitable for field collection of coral samples. Zenodo https://doi.org/10.5281/zenodo.7108092 (2022).
Voolstra, C. R. et al. Consensus guidelines for advancing coral holobiont genome and specimen voucher deposition. Front. Mar. Sci. 8, 1029 (2021).
Article Google Scholar
Staab, S., Cardenas, A., Peixoto, R., Schreiber, F. & Voolstra, C. R. Coracle — a machine learning framework to identify bacteria associated with continuous variables. Bioinformatics 40, btad749 (2024).
Article PubMed Google Scholar
Garcias-Bonet, N. et al. Horizon scanning the application of probiotics for wildlife. Trends Microbiol. https://doi.org/10.1016/j.tim.2023.08.012 (2023).
de Lorenzo, V., Marlière, P. & Solé, R. Bioremediation at a global scale: from the test tube to planet Earth. Microb. Biotechnol. 9, 618–625 (2016).
Article PubMed PubMed Central Google Scholar
Geller, A. M. & Levy, A. “What I cannot create, I do not understand”: elucidating microbe–microbe interactions to facilitate plant microbiome engineering. Curr. Opin. Microbiol. 72, 102283 (2023).
Article PubMed Google Scholar
Ahkami, A. H., Allen White, R., Handakumbura, P. P. & Jansson, C. Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3, 233–243 (2017).
Article Google Scholar
Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).
Article ADS CAS PubMed Google Scholar
Pielke, R., Jr, Burgess, M. G. & Ritchie, J. Plausible 2005–2050 emissions scenarios project between 2 and 3 °C of warming by 2100. Environ. Res. Lett. 17, 024027 (2022).
Article ADS Google Scholar
Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C. & Possingham, H. P. Securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018).
Article PubMed Google Scholar
Voolstra, C. R., Peixoto, R. S. & Ferrier-Pagès, C. Mitigating the ecological collapse of coral reef ecosystems. EMBO Rep. 24, e56826 (2023).
Article CAS PubMed PubMed Central Google Scholar
Xiang, N. et al. Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model. ISME Commun. 2, 1–10 (2022).
Article Google Scholar
Matthews, J. L. et al. Coral endosymbiont growth is enhanced by metabolic interactions with bacteria. Nat. Commun. 14, 6864 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Raina, J. B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).
Article PubMed PubMed Central Google Scholar
Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B 281, 20133086 (2014).
Article PubMed PubMed Central Google Scholar
Diaz, J. M. et al. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event. Nat. Commun. 7, 13801 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
Motone, K. et al. A zeaxanthin-producing bacterium isolated from the algal phycosphere protects coral endosymbionts from environmental stress. mBio 11, e01019-19 (2020).
Article PubMed PubMed Central Google Scholar
Ritchie, K. B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).
Article ADS CAS Google Scholar
Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J. & Voolstra, C. R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv.3, e1602047 (2017).
Article ADS PubMed PubMed Central Google Scholar
Epstein, H. E., Torda, G., Munday, P. L. & van Oppen, M. J. H. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 13, 1635–1638 (2019).
Article CAS PubMed PubMed Central Google Scholar
Williams, A. D., Brown, B. E., Putchim, L. & Sweet, M. J. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE 10, e0144902 (2015).
Article PubMed PubMed Central Google Scholar
Wainwright, B. J., Zahn, G. L., Afiq-Rosli, L., Tanzil, J. T. I. & Huang, D. Host age is not a consistent predictor of microbial diversity in the coral Porites lutea. Sci. Rep. 10, 14376 (2020).
Article ADS CAS PubMed PubMed Central Google Scholar
Quigley, K. M., Alvarez Roa, C., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiology Open 9, e959 (2020).
Article CAS PubMed Google Scholar
Bernasconi, R. et al. Establishment of coral–bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10, 1529 (2019).
Article PubMed PubMed Central Google Scholar
Galazzo, G. et al. How to count our microbes? The effect of different quantitative microbiome profiling approaches. Front. Cell. Infect. Microbiol. 10, 403 (2020).
Article CAS PubMed PubMed Central Google Scholar
Bramucci, A. R., Focardi, A., Rinke, C. & Hugenholtz, P. Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME Commun. 1, 79 (2021).
Article PubMed PubMed Central Google Scholar
Duncan, K. D., Fyrestam, J. & Lanekoff, I. Advances in mass spectrometry based single-cell metabolomics. Analyst 144, 782–793 (2019).
Article ADS CAS PubMed Google Scholar
Assis, J. M. et al. Delivering beneficial microorganisms for corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).
Article PubMed PubMed Central Google Scholar
Mostafa, H. Lyophilized probiotic lactic acid bacteria viability in potato chips and its impact on oil oxidation. Foods 9, 586 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kiepś, J. & Dembczyński, R. Current trends in the production of probiotic formulations. Foods 11, 2330 (2022).
Article PubMed PubMed Central Google Scholar
Wood-Charlson, E. M., Weynberg, K. D., Suttle, C. A., Roux, S. & van Oppen, M. J. H. Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. Environ. Microbiol. 17, 3440–3449 (2015).
Article PubMed Google Scholar
Levin, R. A., Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 11, 808–812 (2017).
Article CAS PubMed Google Scholar
Simmonds, P. et al. Four principles to establish a universal virus taxonomy. PLoS Biol. 21, e3001922 (2023).
Article CAS PubMed PubMed Central Google Scholar
Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & van Oppen, M. J. H. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015).
Article ADS CAS PubMed PubMed Central Google Scholar
Rubio-Portillo, E. et al. Virulence as a side effect of interspecies interaction in vibrio coral pathogens. mBio 11, e00201-20 (2020).
Article CAS PubMed PubMed Central Google Scholar
Buerger, P. et al. Novel T4 bacteriophages associated with black band disease in corals. Environ. Microbiol. 21, 1969–1979 (2019).
Article CAS PubMed Google Scholar
Wang, W. et al. The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction. Nat. Ecol. Evol. 6, 1132–1144 (2022).
Article PubMed Google Scholar
Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).
Article ADS CAS PubMed PubMed Central Google Scholar
Silveira, C. B. & Rohwer, F. L. Piggyback-the-winner in host-associated microbial communities. npj Biofilms Microbiomes 2, 16010 (2016).
Article PubMed PubMed Central Google Scholar
Silveira, C. B. et al. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 21, 126 (2020).
Article CAS PubMed PubMed Central Google Scholar
Cohen, Y., Joseph Pollock, F., Rosenberg, E. & Bourne, D. G. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen 2, 64–74 (2013).
Article CAS PubMed Google Scholar
Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3, e1584 (2008).
Article ADS PubMed PubMed Central Google Scholar
Nelson, C. E., Wegley Kelly, L. & Haas, A. F. Microbial interactions with dissolved organic matter are central to coral reef ecosystem function and resilience. Ann. Rev. Mar. Sci. 15, 431–460 (2023).
Article PubMed Google Scholar
Sil